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Chapter 1

Introduction

The present work investigates the problem of state discrimination by means of
local operations and classical communication (LOCC) in the Fermionic theory.
The Fermi-Dirac statistics describe half-integer spin particles whose applica-
tions, ranging from solid state to high energy physics, make of fermions one of
the most fundamental notions of nature. However, the analysis of Fermionic sys-
tems as carriers of quantum information is rather recent and is still open to new
investigations. The contemporary literature thoroughly tackles the Feynman
problem of simulating fermions with qubits and the universality of Fermionic
computation, providing sharp tools to better understand the theory. Thus, we
review the Jordan-Wigner transformation, that is an isomorphism between the
anticommuting Fermionic systems and the commuting qubits, along with the
results concerning the entanglement between fermions. The LOCC protocols are
firstly introduced in the quantum formalism as a subset of quantum instruments,
which allow for local operations on systems with no shared entanglement re-
sources, then translated into the Fermionic theory thanks to the Jordan-Wigner
transformation. In the thesis, the Fermionic theory is treated as an instance of
operational probabilistic theories (OPTs)1.

An OPT is an operational language that expresses the possible connections
between events, dressed with a probabilistic structure. In such a novel frame-
work, we are interested in rigorously expressing the conditions for which two
states are discriminable using some measurement protocols. It is known that
quantum mechanics satisfies local discriminability, namely any state of a com-
posite system can be probabilistically discriminated using only local measure-
ments on the component systems. Moreover, orthogonal pure states can be per-
fectly (with probability one) discriminated using LOCC, whereas pairs of non-
orthogonal pure states can be optimally discriminated by LOCC, i. e. with the
optimal probability of discrimination. Finally, under certain hypothesis any pair
of quantum states allows for optimal LOCC unambiguous discrimination, thus
allowing for inconclusive outcomes. The validity of these results, which repre-
sent key features within quantum information and quantum computation, is still
unexplored for the Fermionic theory.

In this thesis, we analyze the problem of state discrimination in the Fermionic
theory by providing conditions under which states are distinguishable via LOCC.

1Cf. CDP10; DCP16.
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CHAPTER 1. INTRODUCTION 2

We thereupon look into the prerequisites for Fermionic states in order to allow
for optimal discrimination with local operations and classical communication,
focusing on their operational interpretation. Furthermore, we show that optimal
discrimination through LOCC is always possible provided some entanglement
resources at disposal to the two parts. The long-term aim of this work is indeed
to study the properties of the Fermionic theory in the context of wider studies
still in progress on quantum and Fermionic cellular automata.



Chapter 2

State Discrimination and
Local Operations in the
Quantum Theory

We firstly introduce the quantum theory (QT) of information in the framework
of OPTs. The fundamental axioms of the theory are defined according to von
Neumann on finite-dimensional Hilbert spaces and illustrated along with the
mathematical notation to describe quantum systems and operations. We then
rigorously define the LOCC protocols, where many distant laboratories share a
multipartite quantum system and are allowed to locally operate on their party
but only classically communicate with each other. Finally, the literature results
of perfect and optimal discrimination through LOCC are thoroughly reviewed.

We build up the theory starting from three postulates, as illustrated in the
book [DCP16]:

1. To each system A we associate a complex Hilbert space HA. To the
composition AB of systems A and B we associate the tensor product
HAB = HA ⊗HB .

2. To each state of system A corresponds a positive operator ρ ∈ St(HA) on
HA with Tr[ρ] ≤ 1.

3. Any map that satisfy all mathematical requirements for representing a
transformation within the theory will actually be an admissible quantum
transformations of the theory.

From all three assumptions we derive the well-know properties of the theory
and the structure of state, effect and transformation sets, which we introduce
hereafter.

Any state ρ ∈ St(HA), also known as a preparation of the system, is a
positive operator ρ ≥ 0 on the Hilbert space HA such that Tr[ρ] ≤ 1. The set
St(HA) boasts both a conic and convex structure. The states satisfying Tr[ρ] = 1
are called deterministic and belongs to St1(HA). We define a preparation test
as a collection of preparations {ρi : ρi ∈ St(HA)} such that the coarse graining,

3



CHAPTER 2. QUANTUM STATE DISCRIMINATION AND LOCC 4

i. e.
ρ =

∑
i

ρi, (2.1)

is deterministic. Moreover, the conic structure emerges as soon as we consider
a collection of sub-deterministic preparations {ρi : Tr[ρi] < 1} and conically
combine them to attain

σ =
∑
i

piρi for pi ≥ 0, (2.2)

where σ is a new preparation and must fulfill Tr[σ] ≤ 1. On the other hand, we
define the pure states as those featuring rank equal to one, namely the projectors
onto a one-dimensional subspace of HA. In the Dirac notation, we denote the
pure preparations as ρ = |ψ〉〈ψ|, for |ψ〉 ∈ HA. Mixed states, on the contrary,
have rank larger than one and are inherently linked to the convex combination
of preparations

τ =
∑
i

piρi for 0 ≤ pi ≤ 1,
∑
i

pi = 1 (2.3)

where ρi are some states and τ ∈ St(HA).
Linear functionals on states are called effects and labeled as E ∈ Eff(HA).

They are represented by positive operators dominated by the identity, that is
0 ≤ E ≤ I; the identity, in turn, represents the deterministic effect. We denote
the pairing between the state ρ and effect E on the same system through the
Born rule as

p = (E|ρ) = Tr[Eρ]. (2.4)

Effects may be labeled as atomic when their rank is equal to one. We define as
positive-operator valued measure (POVM) or effect test the collection of effects
{Ei : 0 ≤ Ei ≤ I} such that the coarse graining is the deterministic effect,
namely I =

∑
iEi.

We conclude our introduction with the definition of the quantum transfor-
mation T ∈ Transf(A → B) as the linear, completely-positive and trace-non-
increasing map T : St(HA) → St(HB). Both states and effects may be seen
as transformations from and to the trivial system, respectively. Transforma-
tions that are trace-preserving, i. e. Tr[T (ρ)] = Tr[ρ], are called deterministic
transformations or quantum channels and belongs to Transf1(A→ B), whereas
those that are only trace-non-increasing are usually named quantum operations.
Thanks to Kraus’ theorem we describe any transformation T through the set of
operators {Ki : HA → HB |

∑
iKiK

†
i ≤ I}, called Kraus operators, such that

T (ρ) =
∑
i

KiρK
†
i . (2.5)

Those maps featuring only one Kraus operator are called atomic. A collection of
transformations {Ti} for which T =

∑
i Ti is trace preserving is called a quan-

tum instrument or transformation test. Quantum theory features the relevant
relation that any deterministic and atomic transformation T ∈ Transf(A→ A)
is reversible, i. e. its only Kraus operator belongs to the set of unitary matrices
U(HA).
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ρ
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B i VBi
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Figure 2.1: A schematic representation of a LOCC1 protocol, between Alice and
Bob sharing a bipartite system. The steps are labeled with numbers one to
three: (1) Alice applies her instrument {Ui} on system A and reads i, (2) Alice
sends her outcome i to Bob through a classical channel and (3) Bob applies the
corresponding deterministic transformation Vi. The telegram icon is made by
Freepik from www.flaticon.com.

2.1 Local operations and classical communica-
tion

The paradigm of the “distant laboratory,” where systems are shared among
isolated parties, serves as typical setting for both theoretical and experimental
studies on quantum entanglement. In QT, the axiom of local discriminability
grants us the ability to distinguish probabilistically any pair of multipartite
preparations just by means of local effects on the single parties, also known as
separable effects (SEP). However, the set of separable effects does not provide
a straightforward experimental interpretation and leads to some subtle issues,
cf. [Ben+99]. If we allow the distant parties to locally apply transformations
on their systems and classically communicate to each other in order to improve
their measurement performances we come to the subset of local operations and
classical communication (LOCC), which we introduce hereafter along the lines of
the review [Chi+14]. Given a quantum instrument I = {Ti} ⊂ Transf(Q→ Q′)
on a multipartite system Q = ABC . . . we define:

Definition 1 (One-way local). The instrument IX is one-way local with respect
to system X if each of its transformations has the form

Ti = UXi ⊗

⊗
S 6=X

VSi

 , (2.6)

where UXi ∈ Transf(X → X ′) and all VSi ∈ Transf1(S → S′) are deterministic.

The above setting has a plain operational interpretation: we firstly measure
{UXi } on system X and classically communicate the output i to the other par-
ties, who then apply the transformations VSi ∀S 6= X on the remaining systems.
We define the one-round LOCC1 set as all possible one-way local instruments

https://www.freepik.com/home
www.flaticon.com
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Figure 2.2: An illustration of a possible LOCC link between I = {T1, T2} and
T = {Z1,Z2} is presented. We introduce the two instrument K1 = {Wj|1} and
K2 = {Wj|2 for the two possible outcomes T1 and T2, respectively. The resulting
composite transformations Xij = Wj|i ◦ Ti are then coarse grained to assemble
the operators Z1 = X11 + X21 + X22 and Z2 = X12 + X23.

followed by a coarse-graining map, for which a pictorial representation is given
in fig. 2.1. At this stage, we accordingly link several LOCC1 instrument so that
we define a protocol for multiple-round LOCC without loosing our earlier inter-
pretation.

Definition 2 (LOCC link). A quantum instrument T is LOCC linked to I =
{Ti : i = 1 . . . n} if there exists a collection of one-way local instruments Ki =
{Wj|i : j = 1 . . .mi} ∀i for some system Xi such that T is a coarse graining of
the transformations

Xij =Wj|i ◦ Ti. (2.7)

The resulting protocol for T is again straightforward. We apply the instru-
ment I = {Ti} on the system and read the output i, we now choose the corre-
sponding instrument Ki to measure among {Wj|i} for j = 1 . . .m; an example
is depicted in fig. 2.2.

Thanks to definition 2, we say that the instrument I is a k-round LOCCk
if it is LOCC linked to some J ∈ LOCCk−1 for k > 1, whereas I ∈ LOCCN
if I ∈ LOCCk for some k ∈ N. Eventually, we are able to define the LOCC
instrument set.

Definition 3 (LOCC). The quantum instrument I is an element of LOCC if
there exists a sequence {In} of quantum instruments in which

1. I0 ∈ LOCCN.

2. In is LOCC linked to In−1.

3. Each In has a coarse graining Vn such that

lim
n→∞

Vn = I. (2.8)
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Remark (Quantum instrument topology). The set of instruments over the same
index set carries a metric as follows. For two instruments I = {Ti : i = 1 . . . n}
and K = {Wi : i = 1 . . . n} we define a distance measure induced by the diamond
norm ‖·‖� on the associated quantum transformations, namely

D(I,K) =
n∑
i=1
‖Ti −Wi‖� = max

0≤ρ≤I

n∑
i=1
‖I ⊗ (Ti −Wi)(ρ)‖1, (2.9)

where ‖·‖1 is the trace norm, I the identity on the Hilbert space HQ and ρ a
positive operator on HQ ⊗ HQ. For the convergence of instrument sequences,
as in eq. (2.8), we further assume that there exists an index n̄ ∈ N such that
the limit I and the terms Vn have the same number of transformations for all
n > n̄.

We finally list some relevant properties of the LOCC instruments. We know
that the sets introduced so far undergo the following chain of proper inclusions
[Chi+14, Eq. (3)]

LOCC1 ⊂ LOCCk ⊂ LOCCk+1 ⊂ LOCCN ⊂ LOCC ⊂ SEP. (2.10)

We empathize the last relation of eq. (2.10) and that even the topological closure
of LOCCN is a proper subset of SEP. The set LOCC forms a convex subset of
quantum instruments.

2.2 State discrimination in the quantum theory
In the branch of quantum information, we investigate the properties and fea-
sibility of protocols for state discrimination of quantum systems. We are given
a couple of states ρ, σ for a multipartite system Q and we want to distinguish
between the two making use of transformations and measurements. The discrim-
ination quest is rather pragmatic: let us consider, for instance, that we write
down the simplest conceivable piece of information, that is a bit, on the quan-
tum system Q. Then, as soon as we want to read that information, we have to
distinguish between two states used for encoding. Bipartite systems Q = AB
are a preferred subject of study and, in particular, we are interested in the dis-
crimination capabilities of local operations applied onto the systems separately.
The results of the investigation eventually shed some light on the fundamental
features of the quantum theory.

We assume the systems lying in pure states, thus we can define two normal-
ized vectors |ψ〉 , |φ〉 ∈ HAB such that

ρ = p |ψ〉〈ψ| and σ = q |φ〉〈φ| , p+ q = 1 (2.11)

where p, q are the preparation probabilities for the two states, usually assumed
to be one half each. A black box provides us with the system Q either in the
state ρ or σ and we look for a measurement protocol that allows us to estimate
in which state the system has been prepared. At this stage, we introduce three
possible working schemes depending on the initial state conditions and on the
optimization strategy applied:

Perfect discrimination We require the protocol to distinguish the right state
in a single-shot manner or, equivalently, to succeed with probability equal
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to one. The quest is feasible since the perfect discriminability axiom1 of QT
ensures us the existence of two perfectly discriminable states when they
are not completely mixed. Moreover, two states are perfectly discriminable
if and only if they are orthogonal, i. e. their supports are orthogonal sub-
spaces.

Optimal conclusive discrimination If we release the orthogonality constraint,
we lose the ability to perfectly discriminate two pure states. Hence, we look
for the optimal discrimination strategy that minimizes the error proba-
bility pe of identifying the wrong state. In [Hel67], Helstrom proves the
existence of such a protocol for any couple of pure states, as we later show
in § 2.2.2.

Optimal unambiguous discrimination The protocol returns an unequivo-
cal result of the discrimination with error probability equal to zero. How-
ever, the trade-off is to allow for inconclusive outputs, usually labeled with
a question mark, where no information is gained from the system. The the-
sis does not deal with unambiguous discrimination, for further details see
[Che00; Che04].

Literature comprehensively studies all three discrimination strategies, along
with their relations to locality constraints applied to measurements on mul-
tipartite systems.

2.2.1 The orthogonal case
We perfectly discriminate the state ρ from σ if and only if they are orthogonal,
i. e. when the two vectors |ψ〉, |φ〉 from eq. (2.11) fulfill

〈ψ|φ〉 = 0. (2.12)

In [Wal+00], Walgate et al. show that the discrimination protocol may always be
implemented through LOCC by observing the following strategy. Let {|i〉A}i=1...n
be an orthonormal basis for Alice such that the two states are represented as

|ψ〉 = |1〉A |η1〉B + |2〉A |η2〉B + · · ·+ |n〉A |ηn〉B ,
|φ〉 = |1〉A

∣∣η⊥1 〉B + |2〉A
∣∣η⊥2 〉B + · · ·+ |n〉A

∣∣η⊥n 〉B , (2.13)

where {|ηi〉B} and {
∣∣η⊥i 〉B} are sub-normalized vectors resulting from the factor-

ization of the Bob part. For the sake of simplicity we assume dimHA ≤ dimHB
and that 〈

ηi
∣∣η⊥i 〉 = 0 ∀i. (2.14)

Then the LOCC discrimination is carried out as noted below: Alice simply mea-
sures her local basis {|i〉A} and sends the output i to Bob, who in turns assesses
whether his part is either |ηi〉 or

∣∣η⊥i 〉 and perfectly distinguishes the right state.
In the following we show that a representation as in eq. (2.13) is always possible.

We start from the general representation

|ψ〉 = |1〉A |η1〉B + |2〉A |η2〉B + · · ·+ |n〉A |ηn〉B
|φ〉 = |1〉A |ν1〉B + |2〉A |ν2〉B + · · ·+ |n〉A |νn〉B ,

(2.15)

1Cf. CDP11; DCP16.
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where {|ηi〉B} and {|νi〉B} are neither normalized nor orthogonal. Bob then
chooses an orthonormal basis {|j〉}j=1...m and expresses the factorized vectors
{|ηi〉B} and {|νi〉B} in terms of the new basis:

|ηi〉B =
∑
j

Fij |j〉B and |νi〉B =
∑
j

Gij |j〉B , (2.16)

where F and G are two n ×m matrices. It is now convenient to consider the
resulting product matrix FG†, as we obtain

FG† =

〈ν1|η1〉 · · · 〈ν1|ηn〉
... . . . ...

〈νn|η1〉 · · · 〈νn|ηn〉

 , 〈νi|ηj〉 =
n∑
k=1

FjkG
∗
ik. (2.17)

We are now ready to prove that the perfectly discriminability of pure orthogonal
states is implementable by means of LOCC.

Theorem 1 (Walgate et al.). Two orthogonal pure states

ρ = p |ψ〉〈ψ| and σ = q |φ〉〈φ| , p+ q = 1 (2.11)

are always perfectly discriminable through LOCC.

Proof. We look for a suitable basis for Alice such that the relation of eq. (2.14)
is valid for the {|ηi〉B} and {|νi〉B} vectors. The orthogonality condition of
eq. (2.12) leads here to a traceless FG† matrix, i. e.

〈φ|ψ〉 =
∑
i

〈νi|ηi〉 = Tr
[
FG†

]
= 0. (2.18)

Thus, we are interested in (i) Understanding the behavior of the matrix FG†
under change of basis (ii) Proving the existence of a unitary matrix V ∈ U(HA)
for Alice such that the matrix FG† is zero-diagonal, leading to eq. (2.14).

Whenever Alice changes her basis by applying a unitary matrix V while Bob
does the same through the matrix W ∈ U(HB), we write

|i〉A =
∑
i′

V †ii′ |i
′〉A and |j〉B =

∑
j′

W †jj′ |j
′〉B . (2.19)

From eqs. (2.15) and (2.16) we have

|ψ〉 =
∑
ij

|i〉A Fij |j〉B =
∑
ii′jj′

|i′〉A |j
′〉B V

†
ii′FijW

†
jj′ , (2.20)

thus the matrix F has the components

F ′ij =
∑
i′j′

V ∗i′iFijW
†
jj′ (2.21)

in the new bases. We evaluate the same result for the vector |φ〉 to achieve

F ′ = V ∗FW † and G′ = V ∗GW †; (2.22)
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the matrix FG† has now the form F ′G′† = V ∗FG†V ∗†, V ∗ is a unitary matrix
since V is, and the operator W disappears as expected. We define U = V ∗ and
look for the right matrix choice in order to attain zero-diagonal UFG†U†.

Thanks to theorem 10 in appendix A, we find a matrix U such that all
diagonal components of M = FG† are equal. Nevertheless, from eq. (2.18) we
conclude that FG† is zero-diagonal as required. Theorem 10 proves the existence
of U for systems made of qubits only, though we can overcome such limitation
by enlarging the quantum systems under study. One possible realization is the
following: Alice introduces the ancillary qubit in the state |0〉 and the resulting
state expression would then read as

|ψ〉 = |1〉A |0〉 |η1〉B + · · ·+ |n〉A |0〉 |ηn〉B
+ |1〉A |1〉 |η

′
1〉B + · · ·+ |n〉A |1〉 |η

′
n〉B (2.23)

where |η′i〉B = 0 ∀i. The extended matrix FeG†e has now the dimensions 2n×2n
and, since between n and 2n there is always a power of two2, we can find
a proper equidiagonalizable submatrix. Alice applies the unitary matrix onto
the submatrix and transforms FG† as well, working out the correct measure
basis.

The theorem shows an efficient manner to carry out a protocol for perfect
discrimination by only means of LOCC1. In conclusion we understand that in
QT, the set of separable effects and LOCC protocols have the same capabilities
for the purpose of discriminating pairs of orthogonal states.

2.2.2 Optimal conclusive discrimination
The orthogonality constraint is necessary for perfect discrimination and, when
we release it, we have to set up a discrimination strategy that may be optimized.
We introduce a POVM whose terms are {Πψ,Πφ}, for measuring |ψ〉 and |φ〉
respectively, such that 0 ≤ Πψ,Πφ ≤ I and Πψ+Πφ = I. The optimal conclusive
measurement protocol minimizes the error probability of detecting the wrong
state

popt = min
{Πψ,Πφ}

pe(Πψ,Πφ) (2.24)

where

pe = Tr [Πψσ + Πφρ] = 〈φ|Πψ|φ〉+ 〈ψ|Πφ|ψ〉 . (2.25)

The POVM does exist for any pair of pure states as first shown by [Hel67]. The
protocol requires the introduction of the operator

∆ = ρ− σ = p |ψ〉〈ψ| − q |φ〉〈φ| , (2.26)

and its diagonalization

∆ = λ+ |+〉〈+|+ λ− |−〉〈−| , (2.27)
2If 2k < n < 2n < 2k+1, by dividing all terms by two we have 2k−1 < n/2 < n < 2k <

n.
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where the eigenvalues respect λ+ > 0, λ− < 0 and 〈+|−〉 = 0. The optimal
discrimination strategy is to measure in the diagonalization basis and return the
state |ψ〉 for the output being |+〉, |φ〉 otherwise. At this stage, we rigorously
prove the above assertion.

Theorem 2 (Helstrom). The measurment in the diagonalization basis of the
operator ∆, as in eqs. (2.26) and (2.27), provides the optimal conclusive dis-
crimination strategy for the states ρ, σ.

Proof. Let {λ+, |+〉 ;λ−, |−〉} be the spectrum of operator ∆. We write the
error probability of eq. (2.25) in the diagonalization basis once we fixed the
probabilities p, q:

pe = Tr [Πψσ + (I −Πψ)ρ] = p− Tr [Πψ∆]
= p− (λ+ 〈+|Πψ|+〉+ λ− 〈−|Πψ|−〉) .

(2.28)

Since (i) the eigenvalues λ+, λ− are strictly positive and negative respectively,
as the labels indicate, (ii) the eigenvectors are orthogonal (iii) the operators Πψ,
Πφ are positive, we achieve the optimal strategy for

Πψ = |+〉〈+| and Πφ = |−〉〈−| . (2.29)

We point out that the above protocol can return a wrong result, in the sense
of detecting the incorrect state in reference to the one provided by the black
box. Indeed, this kind of discrimination strategy is called conclusive, as there is
always an outcome, though ambiguous since it is flawed.

According to [Vir+01], the optimal detection protocol of Helstrom, once the
operator ∆ has been correctly diagonalized in the basis {|+〉 , |−〉}, reduces to
the discrimination of two orthogonal states. Nevertheless, in the last section
§ 2.2.1 we showed that perfect discrimination is implementable through only
LOCC thanks to theorem 1. Since the measurement is between the two vectors
{|+〉 , |−〉}, we prove that the optimal conclusive discrimination strategy in the
quantum theory is implementable by only means of LOCC.



Chapter 3

The Fermionic Quantum
Theory

In 1984, R. Feynman wonders whether it is possible to simulate the behavior
of Fermionic systems through quantum qubits1. Since then, the properties of
Fermions have been thoroughly investigated both in terms of computational ca-
pabilities and operational features. On the one hand, the former aspect sheds
light on the underlying informational structure of the theory, with the striking
result that the Fermionic theory and quantum theory of qubits are computa-
tionally equivalent, as proved by [BK02]. On the other hand, the latter leads to
a deeper understanding of the physical traits of the Fermionic theory, especially
to the notions of locality and entanglement.

Fermions are half-integer spin particles that undergo the Pauli exclusion
principle, i.e. two Fermionic particles cannot occupy the same state at the same
time. We present the theory in the second quantization formalism as a super-
selection of the quantum one. In particular, we treat the Fermionic quantum
theory (FQT) as an OPT having local Fermionic modes as elementary systems,
which represents the counterpart of qubits in quantum theory. From the compu-
tational sense a local Fermionic mode is a system which can be either empty or
occupied by a single “excitation.” Within this framework, the Fermionic parity
superselection rule as been derived, see [DAr+14], as a consistency constraint
of the Fermionic probabilistic theory. Eventually, we describe some correspon-
dences to the quantum theory through the Jordan-Wigner transformation.

3.1 The Fermionic algebra
The notion of locality in the FQT is rigorously defined through the Fermionic al-
gebra F. For n local Fermionic modes, we consider the annihilation and creation
operators ai, a†i as those satisfying the canonical anticommutation relations{

ai, a
†
j

}
= δijI and {ai, aj} = 0, (3.1)

where i, j = 1 . . . n. We further inspect the properties of the underlying Hilbert
space if we introduce the number operators as Ni = a†iai. From the anticommu-

1Fey82.

12
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tation relations of eq. (3.1), we conclude that their spectrum is

σ(Ni) = {0, |0〉i ; 1, |1〉i}, (3.2)

i. e. a†iai |0〉i = 0 and a†iai |1〉i = |1〉i. Moreover, the annihilation and creation
operators ai, a†i satisfy the relevant properties of

ai |1〉i = |0〉i , (3.3)
a†i |0〉i = |1〉i , (3.4)

due to eq. (3.1).
The Fermionic operators ai, a†i are the generator of the Fermionic algebra

F(n) for n local Fermionic modes while eqs. (3.3) and (3.4) allow us to interpret
them as lowering and raising operators, respectively, for the number operator
a†iai. Furthermore, the operators a†iai mutually commute and are simultaneously
diagonalizable. We define the vacuum state |Ω〉 as the unique shared eigenvector
whose eigenvalue is equal to zero, namely

a†iai |Ω〉 = 0 ∀i = 1 . . . n. (3.5)

Starting from the vacuum vector |Ω〉 and accordingly applying the creation
operators a†i , we introduce the Fock basis of elements

|s1s2 . . . sn〉 = (a†1)s1(a†2)s2 · · · (a†n)sn |Ω〉 , si = 0, 1 (3.6)

which spans the antisymmetric Fock space

Fn = SpanR{|s1s2 . . . sn〉 : si = 0, 1} (3.7)

of dimension equal to 2n. The term si is the occupation number of the i-th mode
and corresponds to the expectation value of the number operator a†iai. Finally,
we point out that a vector of eq. (3.6) represents a Slater determinant in the
first quantization formalism.

3.2 The parity superselection rule
We briefly introduce the Fermionic quantum theory starting from the assump-
tion made in [DAr+14], so that we can infer its most relevant properties. The
theory deals with systems made of the composition of local Fermionic modes
and is derived starting from the superselected states of the quantum theory of
qubits. We then require the atomic and local transformations to act on their
systems through the Fermionic operators of the algebra F we introduced above.
The FQT manifests new and distinctive traits ranging from a different structure
of state and effect sets to an alternative notion of entanglement. We begin by
assuming the following postulates:

1. The Fermionic quantum theory is causal.

2. The states of n local Fermionic modes are represented by density matrices
on the antisymmetric Fock space Fn.
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3. The transformations on n local Fermionic modes are represented by linear
Hermitian-preserving maps.

4. For a composite system Q = AB of n modes, the local transformations
on the subsystem A of the first 1 . . .m < n modes have Kraus operators
generated by the Fermionic operators aj , a†j ∈ F(m) for j = 1 . . .m.

5. Local transformations on a system retain the same Kraus representation
when other systems are added or discarded.

6. The transformation of Kraus operatorsXi = ai+a†i ∀i = 1 . . . n is physical,
namely it is an admissible map of the theory.

7. The paring between states and effects is given by the Born rule

p = (a|ρ) = Tr[aρ]. (3.8)

8. On a single mode the pairing between the deterministic effect e and the
state ρ is (e|ρ) = Tr[ρ].

The Fermionic algebra takes here the crucial role of defining the locality of
transformations. Indeed, in assumption 4 we require the Kraus operator of an
atomic and local transformation to belong to the algebra of the Fermionic modes
the map is acting upon. Moreover, assumptions 4 and 6 let us derive a relevant
property of any transformation between n local Fermionic modes, namely that
each Kraus operator is a combination of either an even or odd number of field
operators.

The previous results lead to the following two fundamental features of the
Fermionic theory, which allow us to characterize both the sets of preparations
and effects.

Theorem 3 (D’Ariano et al.). States of FQT satisfy the parity superselection
rule, i. e. their density matrices commute with the parity operator

P = 1
2

[
I +

n∏
i=0

(
aia
†
i − a

†
iai

)]
. (3.9)

Theorem 4 (D’Ariano et al.). Effects of the FQT are positive operators made
of products of an even number of fields operators.

The former theorem restricts the set of possible pure states for Fermionic
systems only to those having a well-defined parity. The antisymmetric Fock
space of n modes decomposes into the direct sum

Fn = Fn0 ⊕Fn1 , (3.10)

the subscript indicating the eigenvalue of the parity operator, and the set of
states also decomposes as well in

St(Fn) = St(Fn0 )⊕ St(Fn1 ). (3.11)

If we consider vectors in the form of eq. (3.6), the parity is the sum of the
excitations modulo two

s =
n∑
i=0

si mod 2 (3.12)
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or, equivalently, whether the total occupation number s =
∑
i si is even or odd.

We point out that the set structure of Fermionic states is strongly shaped by
the parity superselection rule and irreversibly altered from the starting quan-
tum one. Since convex-only combinations between vectors of different parity are
allowed, the particular case of a single isolated mode surprisingly reduces to the
classical bit

St(F1) = {p |0〉〈0|+ (1− p) |1〉〈1| : p ∈ [0, 1]}. (3.13)
Beside, the whole set of states St(Fn) is spanned by the convex combinations
of the even and odd preparations as depicted in fig. 3.1, where the case of
two local Fermionic modes is considered. For two modes, the even and odd
states separately have the supports lying on a bidimensional space, shown as
two Bloch spheres in the figure. The states represented on the spheres are pure,
whereas those inside the balls and the convex combination between them are
the Fermionic mixed states.

Generally, the vector space of parity-defined vectors is isomorph to that of
n − 1 qubits, where n is the number of local Fermionic modes. On the other
hand, the linear span of states and effects corresponds to the space of 2n × 2n
hermitian matrices

StR(Fn) = EffR(Fn) = Herm((C2)⊗n), (3.14)

whose dimension is 22n. Once we reordered the Fock basis so that the even
vectors precede the odd ones, we obtain ∀ρ ∈ St(n) and ∀a ∈ Eff(n) that

ρ =
(
ρ0

ρ1

)
, ρ0, ρ1 ≥ 0 and Tr[ρ0 + ρ1],≤ 1 (3.15)

a =
(
a0

a1

)
, 0 ≤ a0 ≤ I0 and 0 ≤ a1 ≤ I1, (3.16)

namely, the preparations and effects are represented as block matrices on the
even and odd subspaces F0, F1.

3.3 Jordan-Wigner transformation
We further understand the locality and entanglement features of the FQT only
once we introduce the Jordan-Wigner transformation between local Fermionic
modes and quantum qubits, firstly proposed in [JW28]. The antisymmetric Fock
space Fn is isometric to the complex Hilbert space of n qubits, as we promptly
realize by looking at the Fock basis of eq. (3.6), and let us define the unitary
map

U : Fn → C2n

|s1s2 . . . sn〉F 7→ |s1s2 . . . sn〉Q .
(3.17)

Given the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.18)

we could then promote the operators

σ±i = σxi ± iσ
y
i

2 (3.19)
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|11〉

|00〉

F2
0

|10〉

|01〉

F2
1

ρ0

ρ1
ρ

0

Figure 3.1: A pictorial representation of the state set for two local Fermionic
modes is shown. The shaded surface depicts the set of deterministic states,
whereas the underlying area delimited by the dotted lines converging to the
zero state refers to the conic structure of sub-deterministic preparations. The
represented states satisfy Supp ρs ⊆ F2

s for s = 0, 1, while ρ = pρ0 + (1− p)ρ1,
p ∈ [0, 1] is any convex combination of the previous two.

to the quantum equivalents of the creation and annihilation Fermionic opera-
tors. On the one hand, we have the correct same-site anticommutation relations{
σ+
i , σ

−
i

}
= I, i = 1 . . . n. However, on the other hand, spins on different sides

commute, since
[
σ+
i , σ

−
j

]
= 0, unlike Fermions which anticommute. We accord-

ingly correct our operators by adding a phase factor able to keep track of the
other excited modes, attaining the Jordan-Wigner transformation

J (ai) = e
−iπ
∑i−1

j=1
σ+
j
σ−
j · σ−i (3.20)

J (a†i ) = e
+iπ
∑i−1

j=1
σ+
j
σ−
j · σ+

i (3.21)
J (a†iai) = σ+

i σ
−
i , (3.22)

while the phase term may also be written as

e
±iπ
∑i−1

j=1
σ+
j
σ−
j =

i−1∏
j=1

e±iπσ
+
j
σ−
j =

i−1∏
j=1

(1− 2σ+
j σ
−
j ) =

i−1∏
j=1

(−σzj ). (3.23)

The transformation J is actually a ∗-algebra isomorphism and let us build
a Fermionic algebra F(n) on the top of a n qubits system. We may be tempted
to translate all Fermionic expressions into quantum ones through the Jordan-
Wigner transformation, however many notion of QT will not apply once they
are transformed back. For instance, as we can see from eqs. (3.20) and (3.21),
local Fermionic operators are generally mapped to a many qubits operator.
Therefore, the locality properties are preserved only if the expression involves
an even number of Fermionic operators for each site, in order to cancel the
phase factor as in eq. (3.22). For an extensive addendum on the Jordan-Wigner
transformation see [Nie05].
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Finally, we conclude by showing a pertinent result for the succeeding chap-
ter 4, namely that Fermionic LOCC correspond to quantum ones.

Theorem 5 (D’Ariano et al.). Every Fermionic LOCC corresponds to a quantum
LOCC on qubits under the Jordan-Wigner transformation.

All the tools required for the study of LOCC-discrimination in the Fermionic
theory have been presented. We anticipate that in chapter 4 all expressions deal
with an even number of Fermionic operators, hence we are allowed to carefree
work with the quantum notation we are used to thanks to the Jordan-Wigner
transformation.



Chapter 4

Pure State Discrimination
in the Fermionic Theory

In this chapter, we investigate the protocols for pure state discrimination in the
Fermionic theory. For two bipartite states, we examine in detail the criteria for
the implementation through LOCC of orthogonal and optimal non-orthogonal
state discrimination. Moreover, we show that it is always possible to perfectly
discriminate two orthogonal pure preparations using LOCC by taking advantage
of a shared entangled resource between the two parts. The results of chapter 2 are
of great use, since in particular circumstances the Fermionic states behave the
same way as quantum ones. In the most general approach, we assume that Alice
holds n local Fermionic modes whereas Bob m of them. Let |ψ〉 , |φ〉 ∈ Fn+m

and ρ = |ψ〉〈ψ| , σ = |φ〉〈φ| be two bipartite pure states. We show readily that
if they feature different parity, e. g. |ψ〉 ∈ Fn+m

0 and |φ〉 ∈ Fn+m
1 , they are

discriminable only by means of LOCC. Alice has to locally measure P0 and P1,
i. e. the projectors on Fn0 e Fn1 respectively, while Bob carries out the same
measurement to his system. After that, they tell each other the result through
a classical channel and whenever they read the same outcome, the state belongs
to the even parity subspace Fn+m

0 , it lays in Fn+m
1 otherwise.

Once we handled the previous case, we focus our study on the discrimination
of two preparation that have the same parity. As it is always possible to swap
between even and odd states just by means of local reversible transformation,
i. e. unitary matrices, all results dealing with LOCC and even states are valid
for the odd ones too. Therefore, we introduce the following convenient notation
to describe even states |ψ〉 ∈ Fn+m

0 :

|ψ〉 = ψE |ψE〉+ ψO |ψO〉 = ψE

c∑
i=1
|Ei〉A

∣∣ηEi 〉B + ψO

c∑
j=1
|Oj〉A

∣∣θOj 〉B , (4.1)

where c = min(n,m) and

|ψE〉 ∈ Fn0 ⊗Fm0 is the even part of |ψ〉, viz. the projection of the vector onto
the subspace of states featuring even parity on both Alice and Bob systems
separately.

ψE ∈ C is even part amplitude.

18
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{|Ei〉A}i=1...n is an orthonormal basis of even states for Alice.{∣∣ηEi 〉B}i=1...c is a set of even vectors resulting from the factorization of the
even part |ψE〉, as determined by the choice of Alice’s basis. In general,
they are neither orthogonal nor normalized.

The same definitions correspondingly apply for the odd part of |ψ〉, once the
necessary changes have been made. For the sake of clarity, we indicate with
the subscript letters E,O the quantities of states for which both Alice and Bob
parts are even and odd, respectively. Since 〈ψE |ψO〉 = 0 ∀ |ψ〉 ∈ F0 we have the
further property that

|ψE |2 + |ψO|2 = 1. (4.2)
For example, consider

|ψ〉 = ψE

(
|00〉︸︷︷︸
|E0〉

√
2/3 |00〉︸ ︷︷ ︸
|ηE0 〉

+ |11〉︸︷︷︸
|E1〉

1/
√

3 |11〉︸ ︷︷ ︸
|ηE1 〉

)
+

ψO

[
|01〉︸︷︷︸
|O0〉

(
1/
√

3 |01〉+ i/
√

3 |10〉
)

︸ ︷︷ ︸
|θO0 〉

+ |10〉︸︷︷︸
|O1〉

(
−1/
√

3 |01〉
)

︸ ︷︷ ︸
|θO1 〉

]
.

4.1 Orthogonal states
In the first part of this chapter, we show that some requirements arise for local
discrimination of two orthogonal states to be achieved. Contrary to the QT, not
all Fermionic states are perfectly discriminable through LOCC. Following our
notation, we introduce the second state

|φ〉 = φE

c∑
i=1
|Ei〉A

∣∣νEi 〉B + φO

c∑
j=1
|Oj〉A

∣∣µOj 〉B (4.3)

and require that

〈ψ|φ〉 = ψ̄EφE 〈ψE |φE〉+ φ̄OψO 〈ψO|φO〉 = 0. (4.4)

In the following, we show that the LOCC discrimination of |ψ〉 and |φ〉 is
possible if the even |ψE〉, |φE〉 and odd |ψO〉, |φO〉 parts of the states are LOCC-
distinguishable separately. We first notice that the condition of eq. (4.4) is ful-
filled if the even-odd amplitudes ψE , φE , ψO and φO or the braket terms are
equal zero. The possible cases are then grouped as follows:

• Two amplitudes are zero.

(a) The two amplitudes are of the same type, e. g. ψE = φE = 0, thus
the orthogonal parts, |ψ〉 = |ψO〉 and |φ〉 = |φO〉, behave exactly as
two ordinary quantum states. The condition of eq. (4.4) translates
into 〈ψO|φO〉 = 0 and, thanks to Walgate et al. protocol of § 2.2.1,
Alice is able to locally select her own odd basis in order to let Bob
perfectly discriminate the two states when〈

θOi
∣∣µOi 〉 = 0 ∀i.
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(b) The two amplitudes are of different type, for instance ψE = φO = 0,
|ψ〉 = |ψO〉 and |φ〉 = |φE〉. The states |ψ〉 and |φ〉 are of different
parity, therefore perfectly discriminable through local measurements.
The protocol is straightforward: Alice or Bob simply have to measure
the parity locally and the correct state is recognized.

• Only one amplitude is zero. Without loss of generality, let ψO = 0, hence
|ψ〉 = |ψE〉 and |φ〉 = φE |φE〉 + φO |φO〉. If Alice locally measures the
parity of her system, she reads odd for the state being |φ〉. Otherwise
Alice and Bob locally implements the Walgate et al. protocol once again
in order to distinguish

∑
i

|Ei〉A
∣∣ηEi 〉B from φE

c∑
i=1
|Ei〉A

∣∣νEi 〉B .
The quest is feasible as eq. (4.4) becomes 〈ψE |φE〉 = 0 and, by the correct
even basis choice, 〈

ηEi
∣∣νEi 〉 = 0 ∀i.

• All amplitudes are different from zero, the case is investigated henceforth.

Here we have two possibilities, in the first case the even and odd parts are
separately orthogonal1, that is

〈ψE |φE〉 = 〈ψO|φO〉 = 0. (4.5)

The expression in eq. (4.5) fulfills the conditions of theorem 1 for the even and
odd parts separately and it is possible to achieve〈

ηEi
∣∣νEi 〉 =

〈
θOj
∣∣µOj 〉 = 0 ∀i, j. (4.6)

Namely, we can treat the two direct sum subspaces (Fn0 ⊗Fm0 )⊕ (Fn1 ⊗Fm1 ) as
those representing two independent quantum system, to which we singly apply
the discrimination protocol through LOCC. Let

{
|E′k〉B

}
k=1...m and

{
|O′k〉B

}
k=1...m

be two even and odd basis for Bob, respectively. There exists two 2s× 2m ma-
trices F and G such that∣∣ηEi 〉B =

m∑
k=1

Fik |E′k〉
∣∣θOj 〉 =

m∑
k=1

Fs+j,m+k |O′k〉

∣∣νEi 〉 =
m∑
k=1

Gik |E′k〉
∣∣µOj 〉 =

m∑
k=1

Gs+j,m+k |O′k〉 ,

and (
FG†

)
ab

=
( 〈

νEa
∣∣ηEb 〉 〈

νEa
∣∣θOb−s〉 = 0〈

µOa−s
∣∣ηEb 〉 = 0

〈
µOa−s

∣∣θOb−s〉
)

=
(
E 0
0 O

)
. (4.7)

This is the equivalent Fermionic representation of eq. (2.17), expressed as the
direct sum of even and odd subspaces. The orthogonality condition of eq. (4.4)
imply that Tr

[
FG†

]
= 0 in the Fermionic case as well, but only the further

requirement of eq. (4.5) ensures that the two blocks E and O are traceless
separately.

1N.B.: 〈ψE |φE〉 = 0⇔ 〈ψO|φO〉 = 0 for ψE , ψO, φE , φO 6= 0.
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In the second case we consider the states for which

〈ψE |φE〉 , 〈ψO|φO〉 6= 0. (4.8)

Indeed, not all orthogonal Fermionic vectors satisfy eq. (4.5), consider for in-
stance the two vectors

|Ψ±〉 = |00〉A |00〉B ± |01〉A |01〉B . (4.9)

They are actually orthogonal, but the even and odd parts are not perfectly
discriminable separately. However, we now prove that only in the case where
eq. (4.5) is satisfied, two orthogonal Fermionic states can be perfectly discrim-
inated through LOCC. In fact, no unitary matrix U = UE + UO is capable to
equidiagonalize FG† and any non-trivial transformation on the whole Fn+m

0
space would inevitably act on superpositions of |ψE〉, |ψO〉 and |φE〉, |φO〉, lead-
ing to non-local effects. In order to rigorously prove the above assertion, we show
that it is not possible to perfectly discriminate two state of this kind through
separable effects SEP, thus neither by means of LOCC.

Theorem 6. Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be two pure, deterministic and
orthogonal states, then the following statements are equivalent:

1. The two states are perfectly discriminable through SEP.

2. The two states are perfectly discriminable through LOCC.

3. The even and odd parts are separately orthogonal, i. e.

〈ψE |φE〉 = 〈ψO|φO〉 = 0. (4.5)

Before we proceed with the theorem proof, we make a brief digression on
separable effects in the Fermionic theory. From assumption 7 of § 3.2 and thanks
to theorem 4, we know that effects are linear functionals (a| = Tr [S·] where S
is a positive operator made of products of an even number of field operators.
If we require all preparations being as in eqs. (4.1) and (4.3), viz. even, we can
focus only on those effects actually observable. The further condition of S being
separable allows us to express the operator as the direct sum

S = SE + SO (4.10)

where

SE =
∑
ij

pij ei ⊗ e′j and SO =
∑
kl

qkl ok ⊗ o′l. (4.11)

In order to represent a Fermionic effect, the operator S must satisfy 0 ≤ S ≤ I
while 0 ≤ pij , qkl ≤ 1, the operators ei, e′j , ok, o′l are positive and

Supp(ei) ⊆ Fn0 Supp(e′j) ⊆ Fm0
Supp(ok) ⊆ Fn1 Supp(o′l) ⊆ Fm1 .

Instead, had we assumed the states to be odd, the separable effect would have
the form

S =
∑
ij

pij ei ⊗ o′j +
∑
kl

qkl ok ⊗ e′l.
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In both cases, mixed terms like e. g. |ψE〉〈ψO| vanish in all expectation values.
We are now ready to prove that state discriminability is implementable through
LOCC if and only if even and odd parts are orthogonal separately, as expressed
in eq. (4.5).

Proof. (Theorem 6) It is trivial to see that 2 ⇒ 1, whereas we have already
shown above that 3 ⇒ 2 thanks to theorem 1. We now focus on the implication
1 ⇒ 3 and wonder which separable effect S maximizes the expression2

p = sup
S∈SEP

Tr [(ρ− σ)S] . (4.12)

From eqs. (4.1) and (4.3) we obtain

ρ− σ = |ψE |2 |ψE〉〈ψE |+ |ψO|2 |ψO〉〈ψO|+ ψEψ̄O |ψE〉〈ψO|+ ψ̄EψO |ψO〉〈ψE |

− |φE |2 |φE〉〈φE | − |φO|2 |φO〉〈φO| − φEφ̄O |φE〉〈φO| − φ̄EφO |φO〉〈φE | ,

to be substituted along with eq. (4.10) into eq. (4.12) to attain

p = Tr
[ (
|ψE |2 |ψE〉〈ψE |+ |ψO|2 |ψO〉〈ψO| − |φE |2 |φE〉〈φE | − |φO|2 |φO〉〈φO|

)
· (SE + SO)

]
. (4.13)

If there exists a separable effect S ∈ SEP(AB) such that p = 1 in eq. (4.12),
then we have

Tr [ρS] = |ψE |2 〈ψE |SE |ψE〉+ |ψO|2 〈ψO|SO|ψO〉 = 1 (4.14)

and

Tr [σS] = |φE |2 〈φE |SE |φE〉+ |φO|2 〈φO|SO|φO〉 = 0. (4.15)

All expectation values of the separable effects in the even and odd part states
are positive values smaller than one. Equations (4.14) and (4.15) are true if and
only if

〈ψE |SE |ψE〉 = 〈ψO|SO|ψO〉 = 1 and 〈φE |SE |φE〉 = 〈φO|SO|φO〉 = 0
(4.16)

which are equivalent to

Tr [(|ψE〉〈ψE | − |φE〉〈φE |)SE ] = 1 and Tr [(|ψO〉〈ψO| − |φO〉〈φO|)SO] = 1.
(4.17)

Hence, it is possible to perfectly discriminate the two states through separable
effects, viz. p = 1 in eq. (4.12), only if the even and odd parts are perfectly
discriminable separately, as required in eq. (4.5).

2Equation (4.12) is derived from the operational norm ‖ρ‖ = sup{a,b}(a − b|ρ) for deter-
ministic theories.
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4.2 Entangled assisted discrimination
The previous result seems to prevent us to any extent from discriminating two
states that do not satisfy eq. (4.5). Nevertheless, it may be possible to perfectly
discriminate via LOCC two pure, deterministic and orthogonal states which fulfill
〈ψE |φE〉 6= 0 and 〈ψO|φO〉 6= 0 by making use of an ancillary system, namely
an entangled state share by Alice and Bob. Let us take the preparation

|ω〉AB = a |00〉+ b |11〉 a, b 6= 0 (4.18)

and consider the two extended states

ρ′ = |ψ〉〈ψ| ⊗ |ω〉〈ω| = |ψ′〉〈ψ′| and σ′ = |φ〉〈φ| ⊗ |ω〉〈ω| = |φ′〉〈φ′| . (4.19)

Their respective vectors may be factorized as follows

|ψ′〉 = ψ′E

aψE
ψ′E

s∑
i=0
|Ei0〉A

∣∣ηEi 0
〉
B

+ bψO
ψ′E

s∑
j=0
|Oj1〉A

∣∣θOj 1
〉
B


E

+ ψ′O

bψE
ψ′O

s∑
i=0
|Ei1〉A

∣∣ηEi 1
〉
B

+ aψO
ψ′O

s∑
j=0
|Oj0〉A

∣∣θOj 0
〉
B


O

(4.20)

where |ψ′E |
2 = |aψE |2 + |bψO|2 and |ψ′O|

2 = |bψE |2 + |aψO|2, and

|φ′〉 = φ′E

aφE
φ′E

s∑
i=0
|Ei0〉A

∣∣νEi 0
〉
B

+ bφO
φ′E

s∑
j=0
|Oj1〉A

∣∣µOj 1
〉
B


E

+ φ′O

bφE
φ′O

s∑
i=0
|Ei1〉A

∣∣νEi 1
〉
B

+ aφO
φ′O

s∑
j=0
|Oj0〉A

∣∣µOj 0
〉
B


O

(4.21)

where |φ′E |
2 = |aφE |2 + |bφO|2 and |φ′O|

2 = |bφE |2 + |aφO|2. We now evaluate
the scalar product

〈ψ′|φ′〉 = ψ̄′Eφ
′
E 〈ψ′E |φ′E〉+ ψ̄′Oφ

′
O 〈ψ′O|φ′O〉 = 〈ψ|φ〉︸ ︷︷ ︸

0

〈ω|ω〉︸ ︷︷ ︸
1

= 0 (4.22)

and, from eqs. (4.20) and (4.21), those of the new even and odd parts

ψ̄′Eφ
′
E 〈ψ′E |φ′E〉 = ψ̄EφE |a|2 〈ψE |φE〉+ ψ̄OφO|b|2 〈ψO|φO〉 (4.23)

ψ̄′Oφ
′
O 〈ψ′O|φ′O〉 = ψ̄EφE |b|2 〈ψE |φE〉+ ψ̄OφO|a|2 〈ψO|φO〉 . (4.24)

With the following theorem, we show that by means of a maximally entangled
ancilla we are actually able to discriminate any couple of orthogonal states only
through LOCC.
Theorem 7. Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be two pure, deterministic and
orthogonal states, it is always possible to perfectly and locally discriminate be-
tween the two preparations via LOCC if we take advantage of an ancillary system
prepared in the state

|ω〉 = 1√
2
(
|00〉+ eiϕ |11〉

)
, ϕ ∈ [0, 2π]. (4.25)
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Proof. From eqs. (4.22) to (4.24) and for |a|2 = |b|2 = 1
2 we have that

ψ̄′Eφ
′
E 〈ψ′E |φ′E〉 = ψ̄′Oφ

′
O 〈ψ′O|φ′O〉 = 1

2
(
ψ̄EφE 〈ψE |φE〉+ φ̄OψO 〈ψO|φO〉

)
= 1

2 〈ψ|φ〉 = 0, (4.26)

which leads to eq. (4.5). We are now able to apply the protocol of Walgate et al.
to the new states as shown in the previous section.

Finally, we point out that the state provided in eq. (4.18) is actually general,
as it enables the discrimination of two odd states in Fn+m

1 too.

4.3 Optimal discrimination
If we release the orthogonality condition, we lose the ability to perfectly dis-
criminate two states, as it happens in the quantum theory. The quest is firstly
to introduce a protocol that reduces the error probability of detecting the wrong
state and, secondly, to assess whether it is implementable through LOCC. As long
as we do not require any locality constraint, the optimal protocol exists and is the
quantum one, as proposed in [Hel67]. Given two deterministic and pure states
ρ = |ψ〉〈ψ|, σ = |φ〉〈φ| with two probabilities p+ q = 1 and3 α = 〈ψ|φ〉 ∈ R, we
introduce the operator

∆ = p |ψ〉〈ψ| − q |φ〉〈φ| (4.27)
for diagonalizing it into the positive and negative subspaces, such that

∆ = λ+ |+〉〈+|+ λ− |−〉〈−| (4.28)

where 〈+|−〉 = 0, λ+ > 0 and λ− < 0. The optimal discrimination protocol
provides for the measurement of pρ+ qσ in the {|+〉 , |−〉} basis, then assigns to
the positive subspace the state being ρ, the result is σ otherwise.

In order to understand when the protocol is realizable by means of LOCC,
we make use of the criterion in eq. (4.5) for the vectors |+〉 and |−〉, namely we
look for

〈+E |−E〉 = 〈+O|−O〉 = 0. (4.29)
The condition can be correctly inspected once we have chosen another basis{
|ψ〉 ,

∣∣ψ⊥〉}, by selecting the normalized vector
∣∣ψ⊥〉 such that

〈
ψ
∣∣ψ⊥〉 = 0

and
|φ〉 = α |ψ〉+ β

∣∣ψ⊥〉 for β =
√

1− α2 ∈ R. (4.30)
The operator ∆ is hermitian and can be diagonalized through unitary matrices,
which we express in the new basis as

U =
(
U00 U01
U10 U11

)
(4.31)

such that

|+〉 = U |ψ〉 = U00 |ψ〉+ U01
∣∣ψ⊥〉 , (4.32)

|−〉 = U
∣∣ψ⊥〉 = U10 |ψ〉+ U11

∣∣ψ⊥〉 , (4.33)
3We are actually given the overlap amplitude |α|2 = Tr [|ψ〉〈ψ| · |φ〉〈φ|] = |〈ψ|φ〉|2, which

we assume to be real.
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and

∆ = U
(
λ+ |ψ〉〈ψ|+ λ−

∣∣ψ⊥〉〈ψ⊥∣∣)U†. (4.34)
Remark. The matrix U has a zero entry if and only if U is either the identity
or the swap operator4, while neglecting the phase shifts. However, in both cases
the matrix ∆ is already diagonal and the two vectors |ψ〉, |φ〉 are orthogonal,
contrary to our hypothesis. We therefore assume the terms Uij being non-zero
from now on.

We introduce the amplitudes for the vectors |+〉, |−〉:
|+〉 = aE |+E〉+ aO |+O〉

= aE

(
U00

ψE
aE
|ψE〉+ U01

ψ⊥E
aE

∣∣ψ⊥E〉)+ aO

(
U00

ψO
aO
|ψO〉+ U01

ψ⊥O
aO

∣∣ψ⊥O〉) ,
(4.35)

|−〉 = bE |−E〉+ bO |−O〉

= bE

(
U10

ψE
bE
|ψE〉+ U11

ψ⊥E
bE

∣∣ψ⊥E〉)+ bO

(
U10

ψO
bO
|ψO〉+ U11

ψ⊥O
bO

∣∣ψ⊥O〉) ,
(4.36)

so that, from eqs. (4.32), (4.33), (4.35) and (4.36), we have

|aE |2 = |U00|2|ψE |2 + |U01|2
∣∣ψ⊥E ∣∣2, |aO|2 = |U00|2|ψO|2 + |U01|2

∣∣ψ⊥O ∣∣2,
(4.37)

|bE |2 = |U10|2|ψE |2 + |U11|2
∣∣ψ⊥E ∣∣2, |bO|2 = |U10|2|ψO|2 + |U11|2

∣∣ψ⊥O ∣∣2.
(4.38)

Taken for granted the above remark, we know that the amplitudes aE and bE
are zero if and only if ψE = ψ⊥E = 0. Up to now, the value of ψ⊥E still has no
physical meaning, as it is not related to any property of the vectors |ψ〉, |φ〉.
Thus, we define the two quantities γ and δ such that

〈ψ|φ〉 = ψ̄EφE 〈ψE |φE〉︸ ︷︷ ︸
γ

+ ψ̄OφO 〈ψO|φO〉︸ ︷︷ ︸
δ

= γ + δ = α (4.39)

and rewrite the vector
∣∣ψ⊥〉 as∣∣ψ⊥〉 = 1

β
|φ〉 − α

β
|ψ〉 = ψ⊥E

∣∣ψ⊥E〉+ ψ⊥O
∣∣ψ⊥O〉

= ψ⊥E
β

(
φE
ψ⊥E
|φE〉 −

αψE
ψ⊥E
|ψE〉

)
+ ψ⊥O

β

(
φO
ψ⊥O
|φO〉 −

αψO
ψ⊥O
|ψO〉

)
.

(4.40)

The modulus squared of the
∣∣ψ⊥〉 amplitudes can be promptly written down

from eqs. (4.39) and (4.40):∣∣ψ⊥E ∣∣2 = 1
|β|2

(
|φE |2 + |α|2|ψE |2 − 2 Reαγ̄

)
, (4.41)

∣∣ψ⊥O ∣∣2 = 1
|β|2

(
|φO|2 + |α|2|ψO|2 − 2 Reαδ̄

)
. (4.42)

4The operator S =
(

0 1
1 0

)
swaps the basis elements.
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Equation (4.41) tells us, that the hypothesis ψE = ψ⊥E = 0 is valid if and
only if ψE = φE = 0, leading to two disjoint cases. Either both vectors |ψ〉,
|φ〉 have no even parts or the measure has to range over both even and odd
subspaces, in order to optimally discriminate the states, and belongs to the
most general setting. In the former situation the amplitudes aE and bE are zero
and the quest reduces to the quantum one, because the measurement between
|+〉 and |−〉 is LOCC-implementable thanks to the protocol of Walgate et al.
The statement is valid for the odd amplitudes correspondingly. The latter one,
instead, constitutes the case of greatest interest as it introduces a distinctive
trait of the Fermionic theory with respect to the quantum one: not all state
pairs are locally and optimally discriminable.

At this stage, we derive and prove a necessary and sufficient condition for
two pure states to be optimally discriminable through LOCC

Theorem 8. Let ρ = p |ψ〉〈ψ| and σ = q |φ〉〈φ| be two pure and probabilistic
states for p, q > 0 and p + q = 1. The they are optimally discriminable if and
only if they satisfy

[∆, PE ] = 0, (4.43)

where

∆ = p |ψ〉〈ψ| − q |φ〉〈φ| (4.27)

and PE is the projector onto the subspace Fn0 ⊗Fm0 .

Proof. We follow the optimal discrimination strategy proposed by Helstrom and
introduce the operator ∆ as in eq. (4.27) along with the eigenvectors {|+〉 , |−〉}.
We have already proved above that, if either ψE = φE = 0 or ψO = φO = 0,
the states are discriminable through LOCC thanks to theorem 1 applied on the
non-zero part. Indeed, states of the form

ρ = p |ψE〉〈ψE | and σ = q |φE〉〈φE | (4.44)

or

ρ = p |ψO〉〈ψO| and σ = q |φO〉〈φO| (4.45)

do satisfy eq. (4.43).
On the other hand, if none of the two conditions mentioned above are sat-

isfied, the amplitudes aE , aO and bE , bO of vectors |+〉, |−〉, respectively, are
non-zero. We can then show that eq. (4.29) is equivalent to

〈+|PE |−〉 = 〈+|PO|−〉 = 0, (4.46)

where PO is the projector onto Fn1 ⊗Fm1 , since we assumed

〈+|PE |−〉 = āEbE 〈+E |−E〉 , (4.47)
〈+|PO|−〉 = āObO 〈+O|−O〉 . (4.48)

If we evaluate the sum and difference of eq. (4.46), we come to

〈+|PE + PO|−〉 = 0 (4.49)
〈+|PE − PO|−〉 = 0, (4.50)
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where the former equation is granted by the relations PE + PO = I0, i. e. their
sum is the projector onto Fn+m

0 , and 〈+|−〉 = 0. We successfully reduced the
LOCC condition to a single expression and can now infer a relevant propriety of
the operator ∆. Indeed, we define the Hermitian operator

D = PE − PO, (4.51)

and note that eq. (4.50) leads the restriction of operator D onto the space
Span{|ψ〉 , |φ〉} to be diagonal in the basis {|+〉 , |−〉}. Two operators are simul-
taneously diagonalizable if and only if they commute, i. e.

[∆, D] = 0 (4.52)

or, given eq. (4.27) and that PO = I0 − PE ,

[p |ψ〉〈ψ| − q |φ〉〈φ| , PE ] = 0. (4.53)

Hence, eq. (4.43) is valid if and only if eq. (4.29) is satisfied. We attain the
optimal discrimination of the two states ρ and σ by measuring in the basis
{|+〉 , |−〉} through the LOCC protocol of § 4.1.

The above result of theorem 8 provides us with an expression to assess
whether optimal discrimination is achievable through LOCC or not. Moreover,
eq. (4.43) is basis independent and does not require us to first diagonalize the
operator ∆, as eq. (4.29) instead does. The striking consequence of theorem 8
is, though, that we are not able to optimally distinguish any two pure states by
only means of LOCC, contrary to QT. Lastly, we may overcome such limitation
of those preparations not fulfilling eq. (4.43) by taking advantage of a shared
entangled resource, as described in the protocol of § 4.2.



Chapter 5

Conclusion

In the first chapters of the thesis, we reviewed the modern literature on dif-
ferent subjects regarding quantum theory and the Fermionic quantum theory
to collect sufficiently sharp tools for our development. Chapters 2 and 3 deal
with state discrimination in QT, quantum LOCC protocols and the description
of FQT to collect some already well-known results we recapitulate hereafter.
Firstly, the very pragmatic notion of local operations and classical communi-
cation is of easy understanding. Nevertheless, it has a complex and contrived
mathematical definition and still leaves some open problems, cf. [Chi+14]. Sec-
ondly, discrimination strategies relying on quantum SEP effects offers no real
advantage over those based onto the subset of LOCC when we both consider any
pair of orthogonal pure states, for the perfect discrimination problem, and non-
orthogonal pure preparations, for the optimal one. Lastly, the FQT presents the
same state set of the superselected qubit theory, though the notion of locality
for the Fermionic transformations is subtly different, leading to an entanglement
of distinct nature.

We managed to derive a condition for two Fermionic, pure and orthogo-
nal states for being perfectly discriminable through LOCC. Thus, we proved
that some Fermionic pure preparations are not perfectly distinguishable by only
means of LOCC, contrary to the QT. The result of § 4.1 surprisingly does not
imply that the SEP and LOCC sets have different discriminations capabilities.
Quite the opposite, they are still equivalent: either they both discriminate pure
orthogonal states or they do not. We still do not know if the above property
belongs to the QT and FQT only, or it is related to some specific postulates the
theories share with others.

The limitation of the theory can be overcome by taking advantage of a
shared entangled ancilla. Namely, if Alice and Bob each owns a part of a system
prepared in

|ω〉 = 1√
2

(|00〉+ eiϕ |11〉),

they can achieve perfect discrimination through LOCC on the composite sys-
tem, as shown in § 4.2. However, the remarkable result is that only a maximally
entangled preparation enables LOCC ideal discrimination. If we plotted the dis-
crimination efficiency of the entanglement assisted protocol as a function of the
entanglement amount—consider the variable |a|2 for instance—we would then
have one for a completely entangled ancilla, zero otherwise. The reasons for such

28
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an extreme discontinuity are unknown to us and shall be better investigated in
the future.

The perfect discriminability is a key feature of a theory for the optimal
distinguishability of two pure non-orthogonal states. Indeed, we showed in § 4.3
that the optimal discrimination strategy of Helstrom for Fermionic preparations
is given by the measurement onto two orthogonal vectors {|+〉 , |−〉}, which
diagonalize the particular operator ∆ evaluated from the two considered states.
We proved in this case too that not all Fermionic pure states are optimally
discriminable by only means of LOCC. Furthermore, we provided an expression
for assessing whether any two states are optimally LOCC-distinguishable without
having to first diagonalize the operator ∆.

Further continuations of this work are the investigation of the feasibility
through LOCC of unambiguous and inconclusive discrimination, as well as the
study of the much harder quest of mixed state discrimination within the Fermionic
theory.



Appendix A

Equidiagonalization of
complex matrices

We prove hereafter that any 2n × 2n complex matrix is equidiagonalizable by
means of unitary matrices, that is we attain a new matrix whose diagonal ele-
ments are all equal. We start by proving the protocol for bidimensional matrices.

Theorem 9 (Equidiagonalization of M(2)). Let M be a 2× 2 complex matrix

M =
(
x y
z t

)
. (A.1)

The matrix M is equidiagonalizable, i. e. there exists a unitary matrix U ∈ U(2)
such that the diagonal elements of UMU† are equal.

Proof. We consider the unitary matrix

U =
(

cos θ sin θeiω
sin θe−iω − cos θ

)
where θ, ω ∈ [0, 2π], det[U ] = −1 (A.2)

and look for UMU†00 = UMU†11. We have

sin θ cos θ
(
zeiω + ye−iω

)
+ t sin2(θ) + x cos2(θ)

= − sin θ cos θ
(
zeiω + ye−iω

)
+ t cos2(θ) + x sin2(θ), (A.3)

hence
sin(2θ)

(
zeiω + ye−iω

)
+ cos(2θ)(x− t) = 0 (A.4)

as well as, for zeiω + ye−iω 6= 0,

tan(2θ)
(
zeiω + ye−iω

)
+ (x− t) = 0. (A.5)

Since we assume the matrix M not being equidiagonal yet, we take for granted
that x− t 6= 0 and θ 6= k π2 for k ∈ Z. The imaginary part of eq. (A.5) reads

Im zeiω + ye−iω

t− x
= 0, (A.6)
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and lets us determine the parameter

ω = arctan Im{x− t}Re{z + y} − Re{x− t} Im{z + y}
Re{x− t}Re{z − y}+ Im{x− t} Im{z − y} . (A.7)

Finally, we put eq. (A.7) into (A.4) and solve for θ

tan(2θ) = t− x
zeiω + ye−iω

∈ R (A.8)

or

θ = π

4 + π

2n, n ∈ Z for zeiω + ye−iω = 0. (A.9)

Both eqs. (A.6) and (A.8) are solvable and lead us to the right choice of U for
equidiagonalizing the matrix M .

Next, we consider the particular set of complex matrices acting on spaces of
dimension equal to 2k as, e. g., those representing k qubits.

Theorem 10 (Equidiagonalization of M(2k)). Let M be a 2k × 2k matrix for
k ∈ N, M is equidiagonalizable through unitary matrices.

Proof. Thanks to theorem 9, we know how to write down the matrix U(θ, ω) in
order to get equal diagonal elements for UMU† when k = 2. We use the same
result to equidiagonalize several pairs of diagonal elements inM simultaneously.

From eqs. (A.3) and (A.8) we write the diagonal terms of UMU† as

UMU†00 = sin θ cos θ
(
zeiω + ye−iω

)
+ t sin2(θ) + x cos2(θ)

= (t− x) sin θ cos θ
tan(2θ) + (t− x) sin2(θ) + x

= (t− x)
(

sin θ cos θ
tan(2θ) + sin2(θ)

)
+ x

= t+ x

2 = UMU†11

(A.10)

and learn that they are functions of the initial matrix diagonal-only elements.
In case of zeiω + ye−iω = 0, the result is as in eq. (A.9) and leads to the same
conclusion. Hence, let M ∈ M(2k) and U ′ a unitary matrix, we consider the
direct sum

U ′ =
2k⊕
i=1

Ui(θ, ω) (A.11)

of U(θ, ω) matrices from theorem 9 and pairwise equidiagonalize k couples of
diagonal terms of M . We then accordingly shuffle the basis terms such that we
come to new pairs of the form

M ′ = U ′MU ′† =



. . .
ξ υ
ζ τ

ξ γ
δ τ

. . .


. (A.12)
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At this point, we separately equidiagonalize the two pairs having diagonal terms
ξ, τ and, as we shown in eq. (A.12), the resulting quartet has the diagonal
elements equal to ζ+ξ

2 . We proved the equidiagonalization of M(4). Finally,
larger matrices are equidiagonalized by simultaneously applying four times the
protocol of theorem 9 on all quartets for achieving eight equal diagonal terms,
eight times for equidiagonalizing the sixteen-elements group and so forth until all
diagonal terms are equal. The algorithm requires k2k−1 elementary operations.

The proof for matrices of any dimensions is given in theorem 1 by enlarging
the quantum system, i. e. by embedding the matrix in a larger space.
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